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Wailupemycin B (1) wurde zusammen mit zwei strukturell
verwandten Verbindungen (Wailupemycin A und C) von
Davidson et al. als a-Pyron-haltiger Metabolit aus Strepto-

myces maritimus isoliert, einem am Wailupe Beach Park an
der S%dostk%ste von Oahu (Hawaii) vorkommenden Actino-
myceten.[1] Aufgrund der geringen Verf%gbarkeit wurde das
antiinfektive Potenzial des Naturstoffs nur unzureichend
evaluiert. F%r uns schien Wailupemycin B als Repr/sentant
einer neuartigen Strukturklasse pr/parativ reizvoll, u.a. auch
deshalb weil die beiden peripheren cyclischen Substituenten
durch De-novo-Synthese beliebig ver/ndert werden k0nnen.
Die Verbindung ist strukturell als Cyclohexanon polyketiden
Ursprungs durch eine hohe Dichte funktioneller Gruppen
gekennzeichnet. W/hrend die Biosynthese der Wailupemy-
cine recht intensiv untersucht wurde,[2] existiert unseres
Wissens bislang keine Totalsynthese eines Wailupemycins.
Wir berichten nun %ber die erste Totalsynthese von (+)-
Wailupemycin B.

Wailupemycin B (1) ist das cylische Ketal eines Ketons
(C-14) und eines cis-1,3-Cyclohexandiols (C-7, C-9). Auf die
hohe S/urelabilit/t der Verbindung wiesen bereits Davidson
et al. hin.[1] Wir beabsichtigten, die Oxidation an C-11 als
letzten Syntheseschritt am vorgebildeten Ketal vorzunehmen,
um Chemoselektivit/tsprobleme aufgrund einer konkurrie-
renden Oxidation an C-9 zu vermeiden. Die Hydroxygruppe
an C-11 musste axial stehen, um eine reibungslose, selektive
Ketalisierung zu erm0glichen. Aus dieser ;berlegung ergab
sich als Schl%sselintermediat das Cyclohexan 2 (Schema 1;
TBDMS= tert-Butyldimethylsilyl, MEM=Methoxyethoxy-

methyl), das bereits alle stereogenen Zentren in der richtigen
Konfiguration enth/lt. Der weitere Plan sah vor, die peri-
pheren Substituenten so einzuf%hren, dass eine gr0ßtm0gli-
che strukturelle Flexibilit/t besteht und dass eine hohe
Stereoselektivit/t beim Aufbau der stereogenen Zentren
gew/hrleistet ist. Als Grundbausteine boten sich Cyclohe-
xane des Typs A an, die leicht aus Carvon hergestellt werden
k0nnen.[3]

Da zum Kn%pfen der Bindung C-13/C-14 an einem vonA
(X=CH2) abgeleiteten Epoxid oder C-12/C-13 an einem
Keton A (X=O) starke Nucleophile ben0tigt werden, war
klar, dass die C-6/C-7-Bindungsbildung nachrangig erfolgen
musste, um das a-Pyron nicht zu gef/hrden (Schema 1). Eine
Alternative w/re, das a-Pyron durch Bindungsbildung zwi-
schen C-4 und C-5 und anschließende Cyclisierung aufzu-
bauen.[4]

In Vorversuchen wurde festgestellt, dass ein durch
Epoxid0ffnung gewonnenes, an C-14 als Dithian gesch%tztes
Keton keine Carbonyladdition an C-7 oder C-5 zul/sst. Wir
entschieden uns deshalb daf%r, ausgehend von einem Keton
A (X=O) die Bindungsbildung in der Reihenfolge C-12/C-13
und C-6/C-7 vorzunehmen. Die Wahl der Konfiguration an
den sp/teren C-Atomen C-7 und C-9 ist dabei f%r die Frage
der facialen Diastereoselektivit/t von zentraler Bedeutung.
F%r diesen Fall legten die Vorversuche eindeutig nahe, die
Konformation durch zwei große /quatoriale Gruppen zu
fixieren. Der Angriff eines hinreichend sperrigen Nucleophils
am Keton 3 (TBDPS= tert-Butyldiphenylsilyl, TMS=Trime-
thylsilyl) erfolgt dann, wie schematisch angedeutet, bevorzugt

/quatorial. Epimere des Ketons 3 mit der richtigen Kon-
figuration am sp/teren C-Atom C-9 lieferten schlechtere
Diastereoselektivit/ten oder reagierten gar nicht.

Ausgehend von (S)-(+)-Carvon wurde nach bekannten
Vorschriften[5] das orthogonal gesch%tzte Cyclohexantriol 4 in
42% Gesamtausbeute erhalten (Schema 2). Nach Ozonolyse
und reduktiver Aufarbeitung wurde das so erhaltene Keton 3
mit Allylmagnesiumbromid umgesetzt (der Grund f%r die

Schema 1. Retrosynthese des Schl�sselintermediats 2 der Wailupemy-
cinsynthese. PG, PG’=Schutzgruppen.
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Wahl dieses Reagens wird weiter unten diskutiert). Die
Reaktion erfolgte mit guter Diastereoselektivit/t (d.r.=
90:10). W/hrend die Veretherung der terti/ren Hydroxy-
gruppe an C-12 mit MEMCl zu 5 nur bei h0heren Tempe-
raturen in 1,2-Dichlorethan (DCE) als L0sungsmittel
gelang,[6, 7] verliefen die Entsch%tzung der Hydroxygruppe

an C-7 und die anschließende durch 2-Iodoxybenzoes/ure
(IBX)[8] vermittelte Oxidation[9,10] problemlos. Das Keton 6
erlaubte durch Umsetzung mit dem von 4-Hydroxy-6-methyl-
pyran-2-on abgeleiteten Dianion[11] den direkten Einbau des
a-Pyronfragments. Die faciale Diastereoselektivit/t der
Reaktion ist sehr gut und l/sst sich mit der in Schema 2
gezeigten Konformation des Ketons 6 erkl/ren. Dieses
Ergebnis best/tigte unsere Planung hinsichtlich der Kon-
figuration des Ketons 3 und der Schutzgruppen. Nach O-
Methylierung des Hydroxypyrons wurde die TBDPS-Gruppe
selektiv mit HF·py (py=Pyridin) entfernt. Die hohe Chemo-
selektivit/t %berrascht insofern nicht, als sich die TBDMS-
Schutzgruppe an einem stark abgeschirmten sekund/ren
Alkohol (C-11) befindet. In der Tat ist diese Schutzgruppe
ohne Abspaltung der MEM-Gruppe praktisch nicht mehr zu
entfernen.

Die Inversion des stereogenen Zentrums an C-9 durch
eine Oxidations-Reduktions-Sequenz bereitete keine Schwie-
rigkeiten. Der Hydridangriff erfolgte an dem konformativ
fixierten System ausschließlich /quatorial. Nach Acetalisie-
rung des 1,3-Diols wurde die Phenylgruppe an C-14 ein-
gef%hrt. Diesen Schritt h/tte man sich durch Addition von 2-
Phenylpropenylmagnesiumbromid anstelle von Allylmagne-
siumbromid in Schritt (b) sparen k0nnen. Wir entschieden
uns aber f%r den beschriebenen Weg, weil wir so eine gr0ßere
Flexibilit/t bei der Einf%hrung anderer Substituenten an C-14
erlangten und weil die Erfahrung zeigte, dass die sperrige
Phenylgruppe zahlreiche Reaktionen am dicht bepackten
Cyclohexanger%st erschwert oder vollst/ndig vereitelt.
Lemieux-Johnson-Oxidation[12] ergab den Aldehyd 9, der
bei tiefer Temperatur glatt mit Phenylmagnesiumbromid
reagierte. Das erhaltene Gemisch der an C-14 epimeren
Alkohole ließ sich mit einer breiten Palette der g/ngigen
Verfahren nicht zum Keton oxidieren, was die angesprochene
Problematik belegt. Die Oxidation fand nicht statt oder
f%hrte zu einer F%lle von undefinierbaren Produkten. Ret-
tung brachte erst die Verwendung von Dess-Martin-Periodi-
nan (DMP)[13] in Gegenwart von Natriumhydrogencarbo-
nat.[14] Auf diese Weise wurde das Schl%sselintermediat 2[15]

erhalten, das unter Verwendung eines 1:2:2:4-Gemischs von
TFA (Trifluoressigs/ure), Essigs/ure, Wasser und THF
erfolgreich in das Ketal 10 umgewandelt werden konnte.
Durch Abspaltung der TBDMS-Schutzgruppe erhielten wir
den nicht isolierbaren, instabilen axialen Alkohol, der durch
sofortige IBX-Oxidation in Wailupemycin B (1) %berf%hrt
wurde. Die von uns synthetisierte Substanz stimmt in allen
spektroskopischen Daten[16] mit dem Naturstoff %berein. Sie
erwies sich als rechtsdrehend ([a]20D =++ 79.0 [c= 0.09,
MeOH]; Naturstoff:[1] [a]24D =++ 77.7 [c= 0.07, MeOH]),
womit auch die von Davidson et al. getroffene Vermutung
zur Absolutkonfiguration best/tigt werden konnte.

Wir haben hier beschrieben, wie (+)-Wailupemycin B (1)
aus der aus (+)-Carvon leicht erh/ltlichen Ausgangsverbin-
dung 4 in 16 Syntheseoperationen und mit einer Gesamtaus-
beute von 14% synthetisiert wurde. Die stereogenen Zentren
wurden mit hoher Kontrolle der facialen Diastereoselektivi-
t/t aufgebaut, und die gew/hlte Strategie erlaubt eine
Modifizierung des Naturstoffs durch andere Substituenten
in der Peripherie. Untersuchungen hierzu sowie zur bio-

Schema 2. Totalsynthese von (+)-Wailupemycin B (1). Alle Ausbeuten
beziehen sich auf isolierte, vollst*ndig charakterisierte Produkte. a) O3,
MeOH in CH2Cl2, �78 8C; dann Me2S, �78 8C!RT, quant.;
b) CH2CHCH2MgBr (1.5 Equiv.) in THF, �20 8C, 1 h, quant.
(d.r.=90:10); c) MEMCl (2.0 Equiv.), EtNiPr2 (3.0 Equiv.) in DCE,
70 8C, 4 h, 80% (d.r.>95:5); d) 3% (w/v) K2CO3 in MeOH, RT, 12 h,
95%; e) IBX (2.0 Equiv.) in DMSO, RT, 5 h, 98%; f) 4-Hydroxy-6-
methylpyran-2-on (2.5 Equiv.), tBuLi (5.3 Equiv.) in THF, �85!0 8C;
dann 6 in THF, �85 8C, 2 d, 82%; g) Dimethylsulfat (2.0 Equiv.), K2CO3

(10.0 Equiv.) in Aceton, RT, 6 h, 92% (d.r.>95:5); h) HF·py in THF,
0 8C!RT, 12 h, 94%; i) IBX (1.5 Equiv.) in DMSO, RT, 4 h, 96%; j) L-
Selectride (1.0 Equiv.) in THF, �78 8C, 1 h, 97%; k) 2-Methoxypropen
(2.0 Equiv.), PPTS (kat.) in DCE, RT, 3 h, 90%; l) OsO4 (0.2 Equiv.),
NaIO4 (2.4 Equiv.), NaOAc (24.0 Equiv.) in THF/H2O (1:1 v/v), RT,
4 h, 83%; m) PhMgBr (1.5 Equiv.) in THF, �78 8C, 1 h, 89%; n) DMP
(2.0 Equiv.), NaHCO3 (14.0 Equiv.) in CH2Cl2, RT, 3 h, 91%; o) TFA/
HOAc/H2O/THF (1:2:2:4 v/v), RT; 1.5 h, 69%; p) 1. TBAF (1.0 Equiv.)
in THF, 0 8C, 25 min; 2. IBX (5.0 Equiv.) in EtOAc, 77 8C, 4 h, 70%.
Nicht im Text erl*uterte Abk�rzungen: tBuLi= tert-Butyllithium, L-
Selectride=Lithiumtri(sec-butyl)borhydrid, PPTS=Pyridinium-p-toluol-
sulfonat, TBAF=Tetrabutylammoniumfluorid.
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logischen Aktivit/t von Wailupemycin und seinen Derivaten
werden derzeit durchgef%hrt.

Eingegangen am 24. M/rz 2003 [Z51455]
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